Construction strategies for a NATM tunnel in Sao Paulo, Brazil, in residual soil  被引量:3

在线阅读下载全文

作  者:Osvaldo P.M.Vitali Tarcisio B.Celestino Antonio Bobet 

机构地区:[1]Lyles School of Civil Engineering,Purdue University,West Lafayette,IN 47907,USA [2]Sao Carlos School of Engineering,University of Sao Paulo,Sao Carlos,SP 13566,Brazil

出  处:《Underground Space》2022年第1期1-18,共18页地下空间(英文)

摘  要:Due to the fast growth of urban areas worldwide,the demand for tunnels in developed areas is increasing.The design and construc-tion of those tunnels are complex because of their shallow depths and their interaction with existing aboveground and buried structures,which results in rather limited allowable ground deformations induced by the tunnel excavation and support.In tropical regions,residual porous soils near the surface are common.Those soils are highly deformable;thus,tunneling may induce large ground deformations that may damage nearby structures.The new Austrian tunneling method(NATM)and the sprayed concrete lining(SCL)technique are being widely employed in several big cities in tropical regions,but little research has been conducted to assess the induced ground deformations in residual soils,common in tropical areas.This paper provides insight into this issue.A well-documented metro tunnel in Sa˜o Paulo,Brazil,in a residual red porous clay,was analyzed using 3D finite element method(FEM).The behavior of the residual red porous clay was approximated by an advanced constitutive soil model calibrated with triaxial tests on intact samples extracted at the site.Predictions of the tunnel deformations during construction matched the field data.The calibrated model was then used to explore the tunnel per-formance under different construction strategies.The influence of partial face excavation,unsupported span length,support stiffness and pipe roof umbrella were assessed.The numerical results showed that partial face excavation was effective to reduce ground deformations ahead of the face of the tunnel and to improve face stability;however,the settlements behind the face increased because of the delay in closing the primary lining.The installation of a stiffer liner closer to the face reduced the ground deformations significantly.The pipe roof umbrella was the most effective technique to reduce the ground deformations around the tunnel;however,the numerical results did not consider deformations that could be in

关 键 词:TUNNEL NATM Residual soil FEM 3D face effects Ground deformation Face stability 

分 类 号:U45[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象