The application of reinforcement learning to NATM tunnel design  

在线阅读下载全文

作  者:Enrico Soranzo Carlotta Guardiani Wei Wu 

机构地区:[1]University of Natural Resources and Life Sciences,Feistmantelstraße 4,Vienna 1180,Austria

出  处:《Underground Space》2022年第6期990-1002,共13页地下空间(英文)

摘  要:The New Austrian Tunnelling Method(NATM)tunnel design is performed by testing support classes against the geological profile.We propose to replace this manual process with reinforcement learning,a generic framework within the realm of artificial intelligence that solves control tasks.Previous studies have demonstrated this possibility,albeit with methodological simplifications.We coupled the Finite Difference Method with a Python script,used the output of the first to train the machine learning model implemented in the latter and improved the choice of the support classes.Through benchmark tests,we demonstrated that our method was capable of choosing the optimal support classes for various geological sets and showed the relation between its performance and the number of training episodes.

关 键 词:Deep Q-Network NATM Reinforcement learning Support classes TUNNELLING 

分 类 号:U45[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象