Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression  被引量:1

在线阅读下载全文

作  者:Wengang Zhang Runhong Zhang Chongzhi Wu Anthony T.C.Goh Lin Wang 

机构地区:[1]School of Civil Engineering,Chongqing University,Chongqing 400045,China [2]Key Laboratory of New Technology for Construction of Cities in Mountain Area,Chongqing University,Chongqing 400045,China [3]School of Civil and Environmental Engineering,Nanyang Technological University,Singapore 639798,Singapore

出  处:《Underground Space》2022年第2期233-241,共9页地下空间(英文)

基  金:supported by Chongqing Construction Science and Technology Plan Project(2019-0045);Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZDK201900102);Chongqing Engineering Research Center of Disaster Prevention and Control for Banks and Structures in Three Gorges Reservoir Area(SXAPGC18YB01,SXAPGC18ZD01).

摘  要:A finite-element analysis considering the anisotropy for the undrained shear strength was performed to examine the effects of the total stress-based anisotropic model NGI-ADP(developed by Norwegian Geotechnical Institute based on the Active-Direct simple shear-Passive concept)parameters on the base stability of deep braced excavations in clays.These parameters included the ratio of the plane strain passive shear strength to the plane strain active shear strength s_(u)^(P)=s_(u)^(A),the ratio of the unloading/reloading shear modulus to the plane strain active shear strength G_(ur)=s_(u)^(A),the plane strain active shear strength s_(u)^(A),the unit weight c,the excavation width B,the wall thickness b,and the wall penetration depth D.According to the numerical results for 1778 hypothetical cases,extreme gradient boosting(XGBoost)and random forest regression(RFR)were adopted to predict the factor of safety(FS)against basal heave for deep braced excavations.The results indicated that the anisotropic characteristics of soil parameters need to be considered when determining the FS against basal heave for braced excavation.XGBoost and RFR can yield a reasonable prediction of the FS.This paper presents a cuttingedge application of ensemble learning methods in geotechnical engineering.

关 键 词:ANISOTROPY NGI-ADP Basal heave Braced excavation Ensemble learning 

分 类 号:TU432[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象