检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶志炜 戴聪明 武鹏飞[1,3] 任益充 梅海平 童杰[1,3,5] 骆传凯 青春 冯云松 魏合理 饶瑞中 TAO Zhiwei;DAI Congming;WU Pengfei;REN Yichong;MEI Haiping;TONG Jie;LUO Chuankai;QING Chun;FENG Yunsong;WEI Heli;RAO Ruizhong(Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;Infrared and Low Temperature Plasma Key Laboratory of Anhui Province,Electronic Countermeasure College,National University of Defense Technology,Hefei 230037,China;Advanced Laser Technology Anhui Laboratory,Hefei 230037,China;School of Physics,Hefei University of Technology,Hefei 230601,China;Science Island Branch,Graduate School of University of Science and Technology of China,Hefei 230026,China)
机构地区:[1]中国科学院合肥物质科学研究院、安徽光学精密机械研究所、中国科学院大气光学重点实验室,合肥230031 [2]国防科学技术大学电子对抗学院红外与低温等离子体安徽省重点实验室,合肥230037 [3]先进激光技术安徽省实验室,合肥230037 [4]合肥工业大学物理学院,合肥230601 [5]中国科学技术大学研究生院科学岛分院,合肥230026
出 处:《光子学报》2023年第5期125-134,共10页Acta Photonica Sinica
基 金:国家重点研发计划(No.2019YFA0706004);中科院合肥物质科学研究院院长基金青年项目(No.YZJJ2023QN05);红外与低温等离子体安徽省重点实验室开放课题资助课题(No.IRKL2023KF05);基础加强计划(No.2020-JCJQ-ZD-136-11)。
摘 要:工作于近地空间的星敏感器,其观测过程将不可避免受到天空背景辐射、大气湍流以及大气折射的影响。本文是星光成像的大气影响系列文章之二,建立了湍流大气星光传输模型,研究了恒星成像的大气湍流影响。基于ERA5数据和光学湍流预报方法得到大气湍流参数廓线,计算了典型地区不同时刻及观测条件下星光的闪烁指数,对比星光闪烁的理论值,验证了数值计算的可靠性。研究了湍流大气中星光传输的闪烁效应及星像质心的抖动特性,得到了典型观测高度及观测天顶角情况下的恒星抖动量。研究表明:恒星抖动的到达角和到达角起伏与星光的闪烁指数呈正相关关系,提升星敏感器的观测高度、减小星敏感器的观测天顶角,能一定程度上减轻星光成像的大气湍流影响。The rapid development of aerospace technology,such as GPS satellite navigation system,represented by high precision and sensitivity,is gradually gaining wide attention from researchers and replacing traditional radio navigation systems,playing an important role in military defense,space exploration,engineering surveying,air-to-air combat and other fields.However,due to the limitations of traditional electromagnetic theory,satellite navigation technology has relatively weak anti-electronic deception and electromagnetic jamming capabilities.In order to enhance the autonomy and reliability of the navigation system,a passive and strong counter-jamming navigation method,which is named as starlight navigation,has been proposed.In the 1950 s,the advent of star sensors greatly improved the accuracy of starlight navigation.Star sensors are high-precision attitude-sensitive measuring instruments that measure the star vector component in the star sensor coordinate system by conducting the stellar observation,and determine the three-axis attitude of the carrier relative to the inertial coordinate system using known precise star positions.The high accuracy,strong counter-jamming ability,and independence from other systems of star sensor navigation technology have a wide range of applications and important military value on various airborne,shipborne,and vehicle-mounted platforms in near-earth space.However,as the development of observation platforms and the decrease in the observation height of star sensors in the atmosphere,a star sensor operating in the terrestrial space will inevitably be affected by sky background radiation,atmospheric turbulence,and atmospheric refraction during the observation.This three-part paper aims to extensively reveal these atmospheric effects on stellar observation.In Part II,we develop a starlight atmospheric propagation model to investigate the effects of atmospheric turbulence on star imaging.Based on the profile of atmospheric turbulence obtained by the ERA5 data of typical regions and optic
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.238.207