边缘增强的EDU-Net遥感影像建筑物提取  被引量:7

Edge-enhanced EDU-Net for Remote Sensing Image Building Extraction

在线阅读下载全文

作  者:李小祥 黄亮[1,2] 朱娟娟 孙宇 杨威 LI Xiaoxiang;HUANG Liang;ZHU Juanjuan;SUN Yu;YANG Wei(Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,China;Surveying and Mapping Geo-informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education,Kunming 650093,China)

机构地区:[1]昆明理工大学国土资源工程学院,昆明650093 [2]云南省高校高原山区空间信息测绘技术应用工程研究中心,昆明650093

出  处:《遥感信息》2023年第2期134-141,共8页Remote Sensing Information

基  金:国家自然科学基金项目(41961039);云南省基础研究计划项目(202201AT070164、202101AT070102)。

摘  要:针对高空间分辨率遥感影像背景信息复杂,现有语义分割模型提取建筑物轮廓易出现边缘缺失、边界划分不清晰等问题,提出一种边缘增强型EDU-Net深度学习网络。在EDU-Net结构设计中,通过构建边缘特征约束模块,结合Sobel边缘检测图细化建筑物边缘特征;同时,基于二次强化策略提升模型对建筑物边缘信息的表征学习能力。在WHU数据集上,EDU-Net语义分割指标MIoU和F1分别为91.99%和92.37%,相较DoubleU-Net提升0.99%和1.05%;在中国典型城市建筑物数据集上,MIoU达83.12%,同时边缘与边界分割效果更佳,证明了所提出模型具有较好的分割性能和普适性。In view of the complex background information of high spatial resolution remote sensing images,the existing semantic segmentation models are prone to edge missing and unclear boundary delineation in extracting building outlines.In this paper,an edge-enhanced EDU-Net deep learning network is proposed.In the design of the EDU-Net structure,the building edge features are refined by constructing an edge feature constraint module combined with a Sobel edge detection map;at the same time,the model’s ability to learn the representation of building edge information is enhanced based on a secondary reinforcement strategy.In the WHU dataset,the EDU-Net semantic segmentation metrics MIoU and F1 are 91.99%and 92.37%respectively,which are 0.99%and 1.05%better than that of DoubleU-Net.In the typical Chinese urban building dataset,MIoU reaches 83.12%and the edge and boundary segmentation is better,which further confirms the segmentation performance and universality of the proposed model.

关 键 词:高空间分辨率 语义分割 DoubleU-Net 边缘特征 深度学习 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象