Modeling of Optimal Deep Learning Based Flood Forecasting Model Using Twitter Data  被引量:1

在线阅读下载全文

作  者:G.Indra N.Duraipandian 

机构地区:[1]Department of Computer Science and Engineering,RMK College of Engineering and Technology,Chennai,601206,India [2]Department of Computer Science and Engineering,Saveetha Engineering College,Chennai,602106,India

出  处:《Intelligent Automation & Soft Computing》2023年第2期1455-1470,共16页智能自动化与软计算(英文)

摘  要:Aflood is a significant damaging natural calamity that causes loss of life and property.Earlier work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage caused byfloods.The massive amount of data generated by social media platforms such as Twitter opens the door toflood analysis.Because of the real-time nature of Twitter data,some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue strategy.However,due to the shorter duration of Tweets,it is difficult to construct a perfect prediction model for determiningflood.Machine learning(ML)and deep learning(DL)approaches can be used to statistically developflood prediction models.At the same time,the vast amount of Tweets necessitates the use of a big data analytics(BDA)tool forflood prediction.In this regard,this work provides an optimal deep learning-basedflood forecasting model with big data analytics(ODLFF-BDA)based on Twitter data.The suggested ODLFF-BDA technique intends to anticipate the existence offloods using tweets in a big data setting.The ODLFF-BDA technique comprises data pre-processing to convert the input tweets into a usable format.In addition,a Bidirectional Encoder Representations from Transformers(BERT)model is used to generate emotive contextual embed-ding from tweets.Furthermore,a gated recurrent unit(GRU)with a Multilayer Convolutional Neural Network(MLCNN)is used to extract local data and predict theflood.Finally,an Equilibrium Optimizer(EO)is used tofine-tune the hyper-parameters of the GRU and MLCNN models in order to increase prediction performance.The memory usage is pull down lesser than 3.5 MB,if its compared with the other algorithm techniques.The ODLFF-BDA technique’s performance was validated using a benchmark Kaggle dataset,and thefindings showed that it outperformed other recent approaches significantly.

关 键 词:Big data analytics predictive models deep learning flood prediction twitter data hyperparameter tuning 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象