Forecasting Stock Volatility Using Wavelet-based Exponential Generalized Autoregressive Conditional Heteroscedasticity Methods  

在线阅读下载全文

作  者:Tariq T.Alshammari Mohd Tahir Ismail Nawaf N.Hamadneh S.Al Wadi Jamil J.Jaber Nawa Alshammari Mohammad H.Saleh 

机构地区:[1]School of Mathematical Science,Universiti Sains Malaysia,Penang,Malaysia [2]Department of Risk Management and Insurance,Faculty of Business,The University of Jordan,Jordan [3]Department of Basic Sciences,College of Science and Theoretical Studies,Saudi Electronic University,Riyadh,Saudi Arabia

出  处:《Intelligent Automation & Soft Computing》2023年第3期2589-2601,共13页智能自动化与软计算(英文)

摘  要:In this study,we proposed a new model to improve the accuracy of fore-casting the stock market volatility pattern.The hypothesized model was validated empirically using a data set collected from the Saudi Arabia stock Exchange(Tada-wul).The data is the daily closed price index data from August 2011 to December 2019 with 2027 observations.The proposed forecasting model combines the best maximum overlapping discrete wavelet transform(MODWT)function(Bl14)and exponential generalized autoregressive conditional heteroscedasticity(EGARCH)model.The results show the model's ability to analyze stock market data,highlight important events that contain the most volatile data,and improve forecast accuracy.The results were compared from a number of mathematical mod-els,which are the non-linear spectral model,autoregressive integrated moving aver-age(ARIMA)model and EGARCH model.The performance of the forecasting model will be evaluated based on some of error functions such as Mean absolute percentage error(MAPE),Mean absolute scaled error(MASE)and Root means squared error(RMSE).

关 键 词:Predictive analytics mathematical models volatility index EGARCH model 

分 类 号:TP39[自动化与计算机技术—计算机应用技术] F83[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象