检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiefeng Liu Yunhe Sheng Chengming Bai
机构地区:[1]School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China [2]Department of Mathematics,Jilin University,Changchun 130012,China [3]Chern Institute of Mathematics&LPMC,Nankai University,Tianjin 300071,China
出 处:《Science China Mathematics》2023年第6期1177-1198,共22页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos.11901501,11922110 and 11931009);supported by the Fundamental Research Funds for the Central Universities;Nankai Zhide Foundation;supported by the National Key Research and Development Program of China (Grant No.2021YFA1002000);the Fundamental Research Funds for the Central Universities (Grant No.2412022QD033)。
摘 要:In this paper,we give Maurer-Cartan characterizations as well as a cohomology theory for compatible Lie algebras.Explicitly,we first introduce the notion of a bidifferential graded Lie algebra and thus give Maurer-Cartan characterizations of compatible Lie algebras.Then we introduce a cohomology theory of compatible Lie algebras and use it to classify infinitesimal deformations and abelian extensions of compatible Lie algebras.In particular,we introduce the reduced cohomology of a compatible Lie algebra and establish the relation between the reduced cohomology of a compatible Lie algebra and the cohomology of the corresponding compatible linear Poisson structures introduced by Dubrovin and Zhang(2001)in their study of bi-Hamiltonian structures.Finally,we use the Maurer-Cartan approach to classify nonabelian extensions of compatible Lie algebras.
关 键 词:compatible Lie algebra Maurer-Cartan element COHOMOLOGY deformation EXTENSION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7