Mining KPI correlations for non-parametric anomaly diagnosis in wireless networks  

在线阅读下载全文

作  者:Tengfei SUI Xiaofeng TAO Huici WU Xuefei ZHANG Jin XU Guoshun NAN 

机构地区:[1]National Engineering Laboratory for Mobile Network Technologies,Beijing University of Posts and Telecommunications,Beijing,100876,China

出  处:《Science China(Information Sciences)》2023年第6期151-165,共15页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.61941105,U21A20449);Beijing Natural Science Foundation (Grant No.L212003);the 111 Project of China (Grant No.B16006)。

摘  要:The increase in mobile data traffic has imposed unprecedented pressure on wireless network management.KPI-based anomaly diagnosis can alleviate such pressure by automatically identifying the cause of abnormalities in the traffic and providing end-to-end monitoring and optimization.Previous approaches mainly focus on finding a subset of anomaly-inducing KPIs on the basis of supervised learning procedures.These studies have two possible limitations:(1)the inherent correlations between KPIs that are proven to be effective for the anomaly diagnosis,are still largely underexplored;(2)machine learning models heavily rely on human annotations,which are expensive and labor-intensive.Therefore,we propose random matrix theorybased KPI identification(RKI),a novel method that automatically mines rich interactions between KPIs for anomaly diagnosis without using any learnable parameters or human annotations.Specifically,RKI diagnoses the abnormal KPIs in two steps.First,we build a matrix for anomaly KPI detection to mine the spectrum of its covariances.Second,another new matrix is reconstructed to calculate the correlation difference.By doing so,the anomaly KPIs that have larger correlation difference scores can be efficiently identified in the wireless traffic without any trainable parameters.In extensive experiments on a public dataset,RKI yields a 6.5%higher true diagnostic rate and 11.36%lower false alarming rate than the statistical model,demonstrating its effectiveness.A 100×larger scale synthetic dataset also demonstrates the capabilities of RKI to explore massive data traffic under real-word scenarios.Finally,we discuss RKI’s potential applications of our method in future 6G wireless networks.

关 键 词:random matrix theory spectral distribution anomaly diagnosis data analysis wireless networks 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象