PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform  

在线阅读下载全文

作  者:Wenbo Li Qi Wang Shang Gao 

机构地区:[1]School of Computer,Jiangsu University of Science and Technology,Zhenjiang,212003,China

出  处:《Intelligent Automation & Soft Computing》2023年第7期921-938,共18页智能自动化与软计算(英文)

基  金:supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grants No.19JKB520031).

摘  要:Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.To address the above challenges,we propose a modified You Only Look Once(YOLO)algorithm PF-YOLOv4-Tiny.The algorithm incorpo-rates spatial pyramidal pooling(SPP)and squeeze-and-excitation(SE)visual attention modules to enhance the target localization capability.The PANet-based-feature pyramid networks(P-FPN)are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy.To lighten the network,the standard convolutions other than the backbone network are replaced with depthwise separable convolutions.In post-processing the images,the soft-non-maximum suppression(soft-NMS)algorithm is employed to subside the missed and false detection problems caused by the occlusion between targets.The accuracy of our model can finally reach 61.75%,while the total Params is only 9.3 M and GFLOPs is 11.At the same time,the inference speed reaches 87 FPS on NVIDIA GeForce GTX 1650 Ti,which can meet the requirements of the infrared target detection algorithm for the embedded deployments.

关 键 词:Infrared target detection visual attention module spatial pyramid pooling dual-path feature fusion depthwise separable convolution soft-NMS 

分 类 号:TN21[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象