Machine Learning for Hybrid Line Stability Ranking Index in Polynomial Load Modeling under Contingency Conditions  

在线阅读下载全文

作  者:P.Venkatesh N.Visali 

机构地区:[1]Jawaharlal Nehru Technological University,Anantapur,Ananthapuramu [2]JNTUA College of Engineering,Constituent College of Jawaharlal Nehru Technological Univeristy,Anantapur,Ananthapuramu

出  处:《Intelligent Automation & Soft Computing》2023年第7期1001-1012,共12页智能自动化与软计算(英文)

摘  要:In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects.The polynomial load modelling or ZIP(constant impedances(Z),Constant Current(I)and Constant active power(P))is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security.The process of finding the severity of the line using a Hybrid Line Stability Ranking Index(HLSRI)is used for assisting the concepts of machine learning with J48 algorithm,infers the superior affected lines by adopting the IEEE standards in concern to be compensated in maintaining the power system stability.The simulation is performed in the WEKA environment and deals with the supervisor learning in order based on severity to ensure the safety of power system.The Unified Power Flow Controller(UPFC),facts devices for the purpose of compensating the losses by maintaining the voltage characteristics.The finite element analysis findings are compared with the existing procedures and numerical equations for authentications.

关 键 词:CONTINGENCY hybrid line stability ranking index(HLSRI) machine learning(ML) unified power flow controller(UPFC) ZIP load modelling 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象