检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:C.Anjali Julia Punitha Malar Dhas J.Amar Pratap Singh
机构地区:[1]Department of CSE,Noorul Islam Center for Higher Studies,629180,Tamil Nadu,India
出 处:《Intelligent Automation & Soft Computing》2023年第5期1241-1256,共16页智能自动化与软计算(英文)
摘 要:The software engineering technique makes it possible to create high-quality software.One of the most significant qualities of good software is that it is devoid of bugs.One of the most time-consuming and costly software proce-dures isfinding andfixing bugs.Although it is impossible to eradicate all bugs,it is feasible to reduce the number of bugs and their negative effects.To broaden the scope of bug prediction techniques and increase software quality,numerous causes of software problems must be identified,and successful bug prediction models must be implemented.This study employs a hybrid of Faster Convolution Neural Network and the Moth Flame Optimization(MFO)algorithm to forecast the number of bugs in software based on the program data itself,such as the line quantity in codes,methods characteristics,and other essential software aspects.Here,the MFO method is used to train the neural network to identify optimal weights.The proposed MFO-FCNN technique is compared with existing methods such as AdaBoost(AB),Random Forest(RF),K-Nearest Neighbour(KNN),K-Means Clustering(KMC),Support Vector Machine(SVM)and Bagging Clas-sifier(BC)are examples of machine learning(ML)techniques.The assessment method revealed that machine learning techniques may be employed successfully and through a high level of accuracy.The obtained data revealed that the proposed strategy outperforms the traditional approach.
关 键 词:Faster convolution neural network Moth Flame Optimization(MFO) Support Vector Machine(SVM) AdaBoost(AB) software bug prediction
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7