检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:M.S.Vivekanandan T.Jesudas
机构地区:[1]Anna University,Chennai,600025,Tamil Nadu,India [2]Mahendra Engineering College(Autonomous),Namakkal,637503,Tamil Nadu,India
出 处:《Intelligent Automation & Soft Computing》2023年第5期1639-1652,共14页智能自动化与软计算(英文)
摘 要:In an urban city,the daily challenges of managing cleanliness are the primary aspect of routine life,which requires a large number of resources,the manual process of labour,and budget.Street cleaning techniques include street sweepers going away to different metropolitan areas,manually verifying if the street required cleaning taking action.This research presents novel street garbage recognizing robotic navigation techniques by detecting the city’s street-level images and multi-level segmentation.For the large volume of the process,the deep learning-based methods can be better to achieve a high level of classifica-tion,object detection,and accuracy than other learning algorithms.The proposed Histogram of Oriented Gradients(HOG)is used to features extracted while using the deep learning technique to classify the ground-level segmentation process’s images.In this paper,we use mobile edge computing to process street images in advance andfilter out pictures that meet our needs,which significantly affect recognition efficiency.To measure the urban streets’cleanliness,our street clean-liness assessment approach provides a multi-level assessment model across differ-ent layers.Besides,with ground-level segmentation using a deep neural network,a novel navigation strategy is proposed for robotic classification.Single Shot Mul-tiBox Detector(SSD)approaches the output space of bounding boxes into a set of default boxes over different feature ratios and scales per attribute map location from the dataset.The SSD can classify and detect the garbage’s accurately and autonomously by using deep learning for garbage recognition.Experimental results show that accurate street garbage detection and navigation can reach approximately the same cleaning effectiveness as traditional methods.
关 键 词:Smart city deep learning edge computing robotic navigation ground segmentation garbage recognition
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7