检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Umamaheswari Ramalingam Senthil Kumar Murugesan Karthikeyan Lakshmanan Chidhambararajan Balasubramaniyan
机构地区:[1]Department of Electronics and Instrumentation Engineering,SRM Valliammai Engineering College,Kattankulathur,Tamilnadu,India [2]Department of Computer Science and Engineering,SRM Valliammai Engineering College,Kattankulathur,Tamilnadu,India [3]Department of Electronics and Communications Engineering,SRM Valliammai Engineering College,Kattankulathur,Tamilnadu,India
出 处:《Intelligent Automation & Soft Computing》2023年第5期1733-1744,共12页智能自动化与软计算(英文)
摘 要:A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main goal of the system is tofind the sentiment behavior of tweets with minimum ambiguity.A well-defined neural network extracts deep features from the tweets automatically.Before extracting features deeper and deeper,the text in each tweet is represented by Bag-of-Words(BoW)and Word Embeddings(WE)models.The effectiveness of DNSCN architecture is analyzed using Twitter-Sanders-Apple2(TSA2),Twit-ter-Sanders-Apple3(TSA3),and Twitter-DataSet(TDS).TSA2 and TDS consist of positive and negative tweets,whereas TSA3 has neutral tweets also.Thus,the proposed DNSCN acts as a binary classifier for TSA2 and TDS databases and a multiclass classifier for TSA3.The performances of DNSCN architecture are evaluated by F1 score,precision,and recall rates using 5-fold and 10-fold cross-validation.Results show that the DNSCN-WE model provides more accuracy than the DNSCN-BoW model for representing the tweets in the feature encoding.The F1 score of the DNSCN-BW based system on the TSA2 database is 0.98(binary classification)and 0.97(three-class classification)for the TSA3 database.This system provides better a F1 score of 0.99 for the TDS database.
关 键 词:Deep neural network word embeddings BAG-OF-WORDS sentiment analysis text classification
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117