Women Entrepreneurship Index Prediction Model with Automated Statistical Analysis  

在线阅读下载全文

作  者:V.Saikumari V.Sunitha 

机构地区:[1]Department of Management Studies,Easwari Engineering College,Ramapuram,600089,India

出  处:《Intelligent Automation & Soft Computing》2023年第5期1797-1810,共14页智能自动化与软计算(英文)

摘  要:Recently,gender equality and women’s entrepreneurship have gained considerable attention in global economic development.Prior to the design of any policy interventions to increase women’s entrepreneurship,it is significant to comprehend the factors motivating women to become entrepreneurs.The non-understanding of the factors can result in the endurance of low living stan-dards and the design of expensive and ineffectual policies.But female involve-ment in entrepreneurship becomes higher in developing economies compared to developed economies.Women Entrepreneurship Index(WEI)plays a vital role in determining the factors that enable theflourishment of high potential female entrepreneurs which enhances economic welfare and contributes to the economic and social fabric of society.Therefore,it is needed to design an automated and accurate WEI prediction model to improve women’s entrepreneurship.In this view,this article develops an automated statistical analysis enabled WEI predic-tive(ASA-WEIP)model.The proposed ASA-WEIP technique aims to effectually determine the WEI.The proposed ASA-WEIP technique encompasses a series of sub-processes such as pre-processing,WEI prediction,and parameter optimiza-tion.For the prediction of WEI,the ASA-WEIP technique makes use of the Deep Belief Network(DBN)model,and the parameter optimization process takes place using Squirrel Search Algorithm(SSA).The performance validation of the ASA-WEIP technique was executed using the benchmark dataset from the Kaggle repo-sitory.The experimental outcomes stated the better outcomes of the ASA-WEIP technique over the other existing techniques.

关 键 词:Predictive model women entrepreneurship statistical models gender equality decision making work-life balance learning and development 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象