检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:T.Merlin Inbamalar Dhandapani Samiappan R.Ramesh
机构地区:[1]Department of Electronics and Instrumentation Engineering,Saveetha Engineering College,Chennai,Tamilnadu,India [2]Department of Electronics and Communication Engineering,Saveetha Engineering College,Chennai,Tamilnadu,India [3]Department of Electronics and Communication Engineering,Tagore Engineering College,Chennai,Tamilnadu,India
出 处:《Intelligent Automation & Soft Computing》2023年第5期1899-1913,共15页智能自动化与软计算(英文)
摘 要:Conferring to the American Association of Neurological Surgeons(AANS)survey,85%to 99%of people are affected by spinal cord tumors.The symptoms are varied depending on the tumor’s location and size.Up-to-the-min-ute,back pain is one of the essential symptoms,but it does not have a specific symptom to recognize at the earlier stage.Numerous significant research studies have been conducted to improve spine tumor recognition accuracy.Nevertheless,the traditional systems are consuming high time to extract the specific region and features.Improper identification of the tumor region affects the predictive tumor rate and causes the maximum error-classification problem.Consequently,in this work,Super-pixel analytics Numerical Characteristics Disintegration Model(SNCDM)is used to segment the tumor affected region.Estimating the super-pix-els of the affected region by this method reduces the variance between the iden-tified pixels.Further,the super-pixels are selected according to the optimized convolution network that effectively extracts the vertebral super-pixels features.Derived super-pixels improve the network learning and training process,which minimizes the maximum error classification problem also the efficiency of the system was evaluated using experimental results and analysis.
关 键 词:Maximum error-classification problem optimized convolution network super-pixel analytics numerical characteristics disintegration model(SNCDM)
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.124.142