Bayes-Q-Learning Algorithm in Edge Computing for Waste Tracking  

在线阅读下载全文

作  者:D.Palanikkumar R.Ramesh Kumar Mehedi Masud Mrim M.Alnfiai Mohamed Abouhawwash 

机构地区:[1]Department of Computer Science and Engineering,Dr.NGP Institute of Technology,Coimbatore,641048,India [2]Department of Information Technology,Sri Krishna College of Technology,Coimbatore,641042,India [3]Department of Computer Science,College of Computers and Information Technology,Taif University,P.O.Box 11099,Taif,21944,Saudi Arabia [4]Department of Information Technology,College of Computers and Information Technology,Taif University,Taif P.O.Box 11099,Taif,21944,Saudi Arabia [5]Department of Mathematics,Faculty of Science,Mansoura University,Mansoura,35516,Egypt [6]Department of Computational Mathematics,Science,and Engineering(CMSE),Michigan State University,East Lansing,MI,48824,USA

出  处:《Intelligent Automation & Soft Computing》2023年第5期2425-2440,共16页智能自动化与软计算(英文)

基  金:supporting project number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.

摘  要:The major environmental hazard in this pandemic is the unhygienic dis-posal of medical waste.Medical wastage is not properly managed it will become a hazard to the environment and humans.Managing medical wastage is a major issue in the city,municipalities in the aspects of the environment,and logistics.An efficient supply chain with edge computing technology is used in managing medical waste.The supply chain operations include processing of waste collec-tion,transportation,and disposal of waste.Many research works have been applied to improve the management of wastage.The main issues in the existing techniques are ineffective and expensive and centralized edge computing which leads to failure in providing security,trustworthiness,and transparency.To over-come these issues,in this paper we implement an efficient Naive Bayes classifier algorithm and Q-Learning algorithm in decentralized edge computing technology with a binary bat optimization algorithm(NBQ-BBOA).This proposed work is used to track,detect,and manage medical waste.To minimize the transferring cost of medical wastage from various nodes,the Q-Learning algorithm is used.The accuracy obtained for the Naïve Bayes algorithm is 88%,the Q-Learning algo-rithm is 82%and NBQ-BBOA is 98%.The error rate of Root Mean Square Error(RMSE)and Mean Error(MAE)for the proposed work NBQ-BBOA are 0.012 and 0.045.

关 键 词:Binary bat algorithm naïve bayes supply chain EDGE medical wastage 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象