4K-DMDNet:diffraction model-driven network for 4K computer-generated holography  被引量:14

在线阅读下载全文

作  者:Kexuan Liu Jiachen Wu Zehao He Liangcai Cao 

机构地区:[1]State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instruments,Tsinghua University,Beijing 100084,China

出  处:《Opto-Electronic Advances》2023年第5期17-29,共13页光电进展(英文)

基  金:We are grateful for financial supports from National Natural Science Foundation of China(62035003,61775117);China Postdoctoral Science Foundation(BX2021140);Tsinghua University Initiative Scientific Research Program(20193080075).

摘  要:Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm.

关 键 词:computer-generated holography deep learning model-driven neural network sub-pixel convolution OVERSAMPLING 

分 类 号:O438.1[机械工程—光学工程] TP391.41[理学—光学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象