检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马玲[1] 杜明华 孟露 杨甜 吴龙国[1] Ma Ling
出 处:《江苏农业科学》2023年第11期167-174,共8页Jiangsu Agricultural Sciences
基 金:宁夏回族自治区重点研发计划(编号:2021BBF02019、2021BBF02024、2022WZYQ0001);宁夏青年科技人才托举工程(编号:TJGC2019065)。
摘 要:叶绿素是植物生长发育必不可少的色素,可用来衡量植物生长状况,为实现番茄叶片叶绿素含量快速、无损检测,以番茄为试验材料,通过高光谱无损检测方法,对番茄叶片叶绿素含量进行监测。提取出82个叶片样本的平均光谱反射率数据(400~1000 nm),对原始光谱数据分别进行7种预处理(平均平滑、高斯滤波、中值滤波、卷积平滑、归一化、基线校准(baseline)、标准正态化(standard normal variation,SNV),建立PLSR模型,建模结果显示:SNV预处理光谱的建模效果最优。用β权重系数、无信息变量消除变换法(uninformation variable elimination,UVE)、竞争自适应重加权法(compet-itive adaptive weighted sampling,CARS)及连续投影算法(successive project-ion algorithm,SPA)等提取特征波长,并建立了PLSR模型,建模结果表明:CARS法提取特征波长所建立的模型最优,CARS法提取了8个特征波长(732、796、946、953、957、968、983、994 nm)被应用于建立番茄叶片叶绿素定量预测模型。为选出最优的建模方法,使用MLR、PCR、PLSR与SVR方法分别对CARS提取的特征波长进行模型对比,优选出的MLR模型用于预测番茄叶绿素含量,最优预测模型MLR的相关系数R c、R cv分别为0.830、0.743,均方根误差RMSEC、RMSECV分别为2.126、2.365。这可为今后在线监测植物长势提供技术支撑。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117