Numerical Solution of Partial Differential Equations in Arbitrary Shaped Domains Using Cartesian Cut-Stencil Finite Difference Method.Part II:Higher-Order Schemes  

在线阅读下载全文

作  者:M.Esmaeilzadeh R.M.Barron 

机构地区:[1]Department of Mechanical,Automotive&Materials Engineering,University of Windsor,Windsor,Ontario,N9B 3P4,Canada [2]Department of Mathematics&Statistics,University of Windsor,Windsor,Ontario,N9B 3P4,Canada [3]Department of Mechanical Engineering,South Tehran Branch,Islamic Azad University,Tehran,P.C:1777613651,Iran

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2022年第3期819-850,共32页高等学校计算数学学报(英文版)

基  金:support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grants program.

摘  要:Compact higher-order(HO)schemes for a new finite difference method,referred to as the Cartesian cut-stencil FD method,for the numerical solution of the convection-diffusion equation in complex shaped domains have been addressed in this paper.The Cartesian cut-stencil FD method,which employs 1-D quadratic transformation functions to map a non-uniform(uncut or cut)physical stencil to a uniform computational stencil,can be combined with compact HO Pad´e-Hermitian formulations to produce HO cut-stencil schemes.The modified partial differential equation technique is used to develop formulas for the local truncation error for the cut-stencil HO formulations.The effect of various HO approximations for Neumann boundary conditions on the solution accuracy and global order of convergence are discussed.The numerical results for second-order and compact HO formulations of the Cartesian cut-stencil FD method have been compared for test problems using the method of manufactured solutions.

关 键 词:Cartesian cut-stencil finite difference method compact higher-order formulation irregular domain Neumann boundary conditions local truncation error 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象