检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bin Li
机构地区:[1]China United Coalbed Methane Corporation,Ltd.,Beijing,100011,China
出 处:《Fluid Dynamics & Materials Processing》2023年第10期2729-2748,共20页流体力学与材料加工(英文)
基 金:This study was financially supported by China United Coalbed Methane Corporation,Ltd.(ZZGSSALFGR2021-581),Bin Li received the grant.
摘 要:In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stems from the combination several techniques,namely,artificial neural network(ANN),particle swarm optimization(PSO),Imperialist Competitive Algorithms(ICA),and Ant Clony Optimization(ACO).These are properly implemented by using the geological and engineering parameters collected from 317 wells.The results show that the optimum PSO-ANN model has a high accuracy,obtaining a R2 of 0.847 on the testing.The partial dependence plots(PDP)indicate that liquid consumption intensity and the proportion of quartz sand are the two most sensitive factors affecting the model’s performance.
关 键 词:Shale gas productivity prediction ANN meta-heuristic algorithm PDP
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7