检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hong Zhang Jiaming Zhou Qi Wang Chengxi Zhu Haijian Shao
机构地区:[1]School of Electrical Information Engineering,Jiangsu University of Technology,Changzhou,213001,China [2]Department of Electrical and Computer Engineering,University of Nevada,Las Vegas,NV 89154,USA
出 处:《Computer Modeling in Engineering & Sciences》2023年第11期1551-1572,共22页工程与科学中的计算机建模(英文)
基 金:supported by the National Natural Science Foundation of China(No.62001197);Natural Sciences Research Grant for Colleges and Universities of Jiangsu Province(No.22KJD470002);Jiangsu Provincial Postgraduate Research and Practice Innovation Program(No.XSJCX21_58).
摘 要:Metal flat surface in-line surface defect detection is notoriously difficult due to obstacles such as high surface reflectivity,pseudo-defect interference,and random elastic deformation.This study evaluates the approach for detecting scratches on a metal surface in order to address a problem in the detection process.This paper proposes an improved Gauss-Laplace(LoG)operator combined with a deep learning technique for metal surface scratch identification in order to solve the difficulties that it is challenging to reduce noise and that the edges are unclear when utilizing existing edge detection algorithms.In the process of scratch identification,it is challenging to differentiate between the scratch edge and the interference edge.Therefore,local texture screening is utilized by deep learning techniques that evaluate and identify scratch edges and interference edges based on the local texture characteristics of scratches.Experiments have proven that by combining the improved LoG operator with a deep learning strategy,it is able to effectively detect image edges,distinguish between scratch edges and interference edges,and identify clear scratch information.Experiments based on the six categories of meta scratches indicate that the proposedmethod has achieved rolled-in crazing(100%),inclusion(94.4%),patches(100%),pitted(100%),rolled(100%),and scratches(100%),respectively.
关 键 词:Deep learning gaussian-laplace algorithm texture feature scratch detection
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.229.52