TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation  

在线阅读下载全文

作  者:Peng Geng Ji Lu Ying Zhang Simin Ma Zhanzhong Tang Jianhua Liu 

机构地区:[1]School of Information Sciences and Technology,Shijiazhuang Tiedao University,Shijiazhuang,050043,China [2]College of Resources and Environment,Xingtai University,Xingtai,054001,China [3]School of Electrical and Electronic Engineering,Shijiazhuang Tiedao University,Shijiazhuang,050043,China

出  处:《Computer Modeling in Engineering & Sciences》2023年第11期2001-2023,共23页工程与科学中的计算机建模(英文)

基  金:supported in part by the National Natural Science Foundation of China under Grant 61972267;the National Natural Science Foundation of Hebei Province under Grant F2018210148;the University Science Research Project of Hebei Province under Grant ZD2021334;the Science and Technology Project of Hebei Education Department(ZD2022098).

摘  要:In medical image segmentation task,convolutional neural networks(CNNs)are difficult to capture long-range dependencies,but transformers can model the long-range dependencies effectively.However,transformers have a flexible structure and seldom assume the structural bias of input data,so it is difficult for transformers to learn positional encoding of the medical images when using fewer images for training.To solve these problems,a dual branch structure is proposed.In one branch,Mix-Feed-Forward Network(Mix-FFN)and axial attention are adopted to capture long-range dependencies and keep the translation invariance of the model.Mix-FFN whose depth-wise convolutions can provide position information is better than ordinary positional encoding.In the other branch,traditional convolutional neural networks(CNNs)are used to extract different features of fewer medical images.In addition,the attention fusion module BiFusion is used to effectively integrate the information from the CNN branch and Transformer branch,and the fused features can effectively capture the global and local context of the current spatial resolution.On the public standard datasets Gland Segmentation(GlaS),Colorectal adenocarcinoma gland(CRAG)and COVID-19 CT Images Segmentation,the F1-score,Intersection over Union(IoU)and parameters of the proposed TC-Fuse are superior to those by Axial Attention U-Net,U-Net,Medical Transformer and other methods.And F1-score increased respectively by 2.99%,3.42%and 3.95%compared with Medical Transformer.

关 键 词:TRANSFORMERS convolutional neural networks fusion medical image segmentation axial attention 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象