检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jianfang Lin Yan Xu Huiwen Xue Xinghui Zhong
机构地区:[1]School of Mathematical Sciences,Zhejiang University,Hangzhou,Zhejiang 310058,P.R.China [2]School of Mathematical Sciences,University of Science and Technology of China,Hefei,Anhui 230026,P.R.China
出 处:《Communications in Computational Physics》2022年第3期913-946,共34页计算物理通讯(英文)
基 金:supported by National Natural Science Foundation of China(Grant No.12071455);supported by National Natural Science Foundation of China(Grant No.11871428)。
摘 要:In this paper,we develop twofinite difference weighted essentially non-oscillatory(WENO)schemes with unequal-sized sub-stencils for solving the Degasperis-Procesi(DP)andµ-Degasperis-Procesi(µDP)equations,which contain nonlinear high order derivatives,and possibly peakon solutions or shock waves.By introducing auxiliary variable(s),we rewrite the DP equation as a hyperbolic-elliptic system,and theµDP equation as afirst order system.Then we choose a linearfinite difference scheme with suitable order of accuracy for the auxiliary variable(s),and twofinite difference WENO schemes with unequal-sized sub-stencils for the primal variable.One WENO scheme uses one large stencil and several smaller stencils,and the other WENO scheme is based on the multi-resolution framework which uses a se-ries of unequal-sized hierarchical central stencils.Comparing with the classical WENO scheme which uses several small stencils of the same size to make up a big stencil,both WENO schemes with unequal-sized sub-stencils are simple in the choice of the stencil and enjoy the freedom of arbitrary positive linear weights.Another advantage is that thefinal reconstructed polynomial on the target cell is a polynomial of the same de-gree as the polynomial over the big stencil,while the classicalfinite difference WENO reconstruction can only be obtained for specific points inside the target interval.Nu-merical tests are provided to demonstrate the high order accuracy and non-oscillatory properties of the proposed schemes.
关 键 词:High order accuracy weighted essentially non-oscillatory schemes Degasperis-Procesi equation µ-Degasperis-Procesi equation finite difference method MULTI-RESOLUTION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15