检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shijun Zou Xiaolong Zhao Xijun Yu Zihuan Dai
机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,P.R.China [2]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,P.R.China [3]Institute of Applied Physics and Computational Mathematics,Beijing 100088,P.R.China
出 处:《Communications in Computational Physics》2022年第7期547-582,共36页计算物理通讯(英文)
基 金:supported by National Natural Science Foundation of China(12071046,11671049,91330107,11571002 and 11702028);China Postdoctoral Science Foundation(2020TQ0013).
摘 要:In this paper,we present a Runge-Kutta Discontinuous Galerkin(RKDG)method for solving the two-dimensional ideal compressible magnetohydrodynamics(MHD)equations under the Lagrangian framework.The fluid part of the ideal MHD equations along with z-component of the magnetic induction equation are discretized using a DG method based on linear Taylor expansions.By using the magnetic fluxfreezing principle which is the integral form of the magnetic induction equation of the ideal MHD,an exactly divergence-free numerical magnetic field can be obtained.The nodal velocities and the corresponding numerical fluxes are explicitly calculated by solving multidirectional approximate Riemann problems.Two kinds of limiter are proposed to inhibit the non-physical oscillation around the shock wave,and the second limiter can eliminate the phenomenon of mesh tangling in the simulations of the rotor problems.This Lagrangian RKDG method conserves mass,momentum,and total energy.Several numerical tests are presented to demonstrate the accuracy and robustness of the proposed scheme.
关 键 词:Lagrangian RKDG method ideal compressible MHD equations Taylor basis exactly divergence-freemagnetic field LIMITER
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62