Hyperspectral Remote Sensing Image Classification Using Improved Metaheuristic with Deep Learning  被引量:1

在线阅读下载全文

作  者:S.Rajalakshmi S.Nalini Ahmed Alkhayyat Rami Q.Malik 

机构地区:[1]Department of Information Technology,Velalar College of Engineering and Technology,Erode,638012,India [2]Department of Computer Science&Engineering,University College of Engineering,BIT Campus,Anna University,Tiruchirappalli,620024,India [3]College of Technical Engineering,The Islamic University,Najaf,Iraq [4]Medical Instrumentation Techniques Engineering Department,Al-Mustaqbal University College,Babylon,Iraq

出  处:《Computer Systems Science & Engineering》2023年第8期1673-1688,共16页计算机系统科学与工程(英文)

摘  要:Remote sensing image(RSI)classifier roles a vital play in earth observation technology utilizing Remote sensing(RS)data are extremely exploited from both military and civil fields.More recently,as novel DL approaches develop,techniques for RSI classifiers with DL have attained important breakthroughs,providing a new opportunity for the research and development of RSI classifiers.This study introduces an Improved Slime Mould Optimization with a graph convolutional network for the hyperspectral remote sensing image classification(ISMOGCN-HRSC)model.The ISMOGCN-HRSC model majorly concentrates on identifying and classifying distinct kinds of RSIs.In the presented ISMOGCN-HRSC model,the synergic deep learning(SDL)model is exploited to produce feature vectors.The GCN model is utilized for image classification purposes to identify the proper class labels of the RSIs.The ISMO algorithm is used to enhance the classification efficiency of the GCN method,which is derived by integrating chaotic concepts into the SMO algorithm.The experimental assessment of the ISMOGCN-HRSC method is tested using a benchmark dataset.

关 键 词:Deep learning remote sensing images image classification slime mould optimization parameter tuning 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象