Improved Siamese Palmprint Authentication Using Pre-Trained VGG16-Palmprint and Element-Wise Absolute Difference  

在线阅读下载全文

作  者:Mohamed Ezz Waad Alanazi Ayman Mohamed Mostafa Eslam Hamouda Murtada K.Elbashir Meshrif Alruily 

机构地区:[1]College of Computers and Information Sciences,Jouf University,Sakaka,72314,Saudi Arabia

出  处:《Computer Systems Science & Engineering》2023年第8期2299-2317,共19页计算机系统科学与工程(英文)

基  金:This work was funded by the Deanship of Scientific Research at Jouf University under Grant No.(DSR-2022-RG-0104).

摘  要:Palmprint identification has been conducted over the last two decades in many biometric systems.High-dimensional data with many uncorrelated and duplicated features remains difficult due to several computational complexity issues.This paper presents an interactive authentication approach based on deep learning and feature selection that supports Palmprint authentication.The proposed model has two stages of learning;the first stage is to transfer pre-trained VGG-16 of ImageNet to specific features based on the extraction model.The second stage involves the VGG-16 Palmprint feature extraction in the Siamese network to learn Palmprint similarity.The proposed model achieves robust and reliable end-to-end Palmprint authentication by extracting the convolutional features using VGG-16 Palmprint and the similarity of two input Palmprint using the Siamese network.The second stage uses the CASIA dataset to train and test the Siamese network.The suggested model outperforms comparable studies based on the deep learning approach achieving accuracy and EER of 91.8%and 0.082%,respectively,on the CASIA left-hand images and accuracy and EER of 91.7%and 0.084,respectively,on the CASIA right-hand images.

关 键 词:Palmprint authentication transfer learning feature extraction CLASSIFICATION VGG-16 and Siamese network 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象