检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kang Xiaofeng Hu Kun Ran Li
机构地区:[1]College of Information and Engineering,Xuzhou University of Technology,Xuzhou,Jiangsu,221000,China [2]College of Electrical and Power Engineering,China University of Mining and Technology,Xuzhou,Jiangsu,221116,China [3]Department of Electrical,Electronic and Computer Engineering,University of Western Australia,Perth,Australia
出 处:《Computer Systems Science & Engineering》2023年第9期2963-2974,共12页计算机系统科学与工程(英文)
摘 要:Acoustic emission(AE)is a nondestructive real-time monitoring technology,which has been proven to be a valid way of monitoring dynamic damage to materials.The classification and recognition methods of the AE signals of the rotor are mostly focused on machine learning.Considering that the huge success of deep learning technologies,where the Recurrent Neural Network(RNN)has been widely applied to sequential classification tasks and Convolutional Neural Network(CNN)has been widely applied to image recognition tasks.A novel three-streams neural network(TSANN)model is proposed in this paper to deal with fault detection tasks.Based on residual connection and attention mechanism,each stream of the model is able to learn the most informative representation from Mel Frequency Cepstrum Coefficient(MFCC),Tempogram,and short-time Fourier transform(STFT)spectral respectively.Experimental results show that,in comparison with traditional classification methods and single-stream CNN networks,TSANN achieves the best overall performance and the classification error rate is reduced by up to 50%,which demonstrates the availability of the model proposed.
关 键 词:Convolutional neural network attention mechanism acoustic emission fault detection
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13