Hash-Indexing Block-Based Deduplication Algorithm for Reducing Storage in the Cloud  

在线阅读下载全文

作  者:D.Viji S.Revathy 

机构地区:[1]Department of Computer Science and Engineering,Sathyabama Institute of Science and Technology,Chennai,India

出  处:《Computer Systems Science & Engineering》2023年第7期27-42,共16页计算机系统科学与工程(英文)

摘  要:Cloud storage is essential for managing user data to store and retrieve from the distributed data centre.The storage service is distributed as pay a service for accessing the size to collect the data.Due to the massive amount of data stored in the data centre containing similar information and file structures remaining in multi-copy,duplication leads to increase storage space.The potential deduplication system doesn’t make efficient data reduction because of inaccuracy in finding similar data analysis.It creates a complex nature to increase the storage consumption under cost.To resolve this problem,this paper proposes an efficient storage reduction called Hash-Indexing Block-based Deduplication(HIBD)based on Segmented Bind Linkage(SBL)Methods for reducing storage in a cloud environment.Initially,preprocessing is done using the sparse augmentation technique.Further,the preprocessed files are segmented into blocks to make Hash-Index.The block of the contents is compared with other files through Semantic Content Source Deduplication(SCSD),which identifies the similar content presence between the file.Based on the content presence count,the Distance Vector Weightage Correlation(DVWC)estimates the document similarity weight,and related files are grouped into a cluster.Finally,the segmented bind linkage compares the document to find duplicate content in the cluster using similarity weight based on the coefficient match case.This implementation helps identify the data redundancy efficiently and reduces the service cost in distributed cloud storage.

关 键 词:Cloud computing DEDUPLICATION hash indexing relational content analysis document clustering cloud storage record linkage 

分 类 号:TP31[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象