Stock Market Prediction Using Generative Adversarial Networks(GANs):Hybrid Intelligent Model  

在线阅读下载全文

作  者:Fares Abdulhafidh Dael Omer CagrıYavuz Ugur Yavuz 

机构地区:[1]Department of Management Information Systems,Ataturk University,Erzurum,25030,Turkey [2]Department of Management Information Systems,Karadeniz Technical University,Trabzon,61080,Turkey

出  处:《Computer Systems Science & Engineering》2023年第10期19-35,共17页计算机系统科学与工程(英文)

摘  要:The key indication of a nation’s economic development and strength is the stock market.Inflation and economic expansion affect the volatility of the stock market.Given the multitude of factors,predicting stock prices is intrinsically challenging.Predicting the movement of stock price indexes is a difficult component of predicting financial time series.Accurately predicting the price movement of stocks can result in financial advantages for investors.Due to the complexity of stock market data,it is extremely challenging to create accurate forecasting models.Using machine learning and other algorithms to anticipate stock prices is an interesting area.The purpose of this article is to forecast stock market values to assist investors to make better informed and precise investing decisions.Statistics,Machine Learning(ML),Natural language processing(NLP),and sentiment analysis will be used to accomplish the study’s objectives.Using both qualitative and quantitative information,the study developed a hybrid model.The hybrid model has been handled with GANs.Based on the model’s predictions,a buy-or-sell trading strategy is offered.The conclusions of this study will assist investors in selecting the ideal choice while selling,holding,or buying shares.

关 键 词:Stock markets STATISTICS machine learning sentiment analysis investment decisions 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象