New Denial of Service Attacks Detection Approach Using Hybridized Deep Neural Networks and Balanced Datasets  

在线阅读下载全文

作  者:Ouail Mjahed Salah El Hadaj El Mahdi El Guarmah Soukaina Mjahed 

机构地区:[1]L2IS,Department of Computer Sciences,Faculty of Sciences and Technology,Cadi Ayyad University,Marrakech,40000,Morocco 2Mathematics and Informatics Department,Royal Air School,Marrakech,40000,Morocco

出  处:《Computer Systems Science & Engineering》2023年第10期757-775,共19页计算机系统科学与工程(英文)

摘  要:Denial of Service(DoS/DDoS)intrusions are damaging cyberattacks,and their identification is of great interest to the Intrusion Detection System(IDS).Existing IDS are mainly based on Machine Learning(ML)methods including Deep Neural Networks(DNN),but which are rarely hybridized with other techniques.The intrusion data used are generally imbalanced and contain multiple features.Thus,the proposed approach aims to use a DNN-based method to detect DoS/DDoS attacks using CICIDS2017,CSE-CICIDS2018 and CICDDoS 2019 datasets,according to the following key points.a)Three imbalanced CICIDS2017-2018-2019 datasets,including Benign and DoS/DDoS attack classes,are used.b)A new technique based on K-means is developed to obtain semi-balanced datasets.c)As a feature selectionmethod,LDA(Linear Discriminant Analysis)performance measure is chosen.d)Four metaheuristic algorithms,counting Artificial Immune System(AIS),Firefly Algorithm(FA),Invasive Weeds Optimization(IWO)and Cuckoo Search(CS)are used,for the first time together,to increase the performance of the suggested DNN-based DoS attacks detection.The experimental results,based on semi-balanced training and test datasets,indicated that AIS,FA,IWO and CS-based DNNs can achieve promising results,even when cross-validated.AIS-DNN yields a tested accuracy of 99.97%,99.98%and 99.99%,for the three considered datasets,respectively,outperforming performance established in several related works.

关 键 词:CLASSIFICATION neural networks metaheuristic algorithm intrusion detection system DOS/DDOS 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象