检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mesfer Al Duhayyim Sidra Abbas Abdullah Al Hejaili Natalia Kryvinska Ahmad Almadhor Huma Mughal
机构地区:[1]Department of Computer Science,College of Computer Engineering and Sciences,Prince Sattam bin Abdulaziz University Al-Kharj,16273,Saudi Arabia [2]Department of Computer Science,COMSATS University,Islamabad,53000,Pakistan [3]Faculty of Computers&Information Technology,Computer Science Department,University of Tabuk,Tabuk,71491,Saudi Arabia [4]Department of Computer Engineering and Networks,College of Computer and Information Sciences,Jouf University,Sakaka,72388,Saudi Arabia [5]Information Systems Department,Faculty of Management Comenius University in Bratislava,Odbojárov 10,82005 Bratislava 25,Slovakia [6]Department of Computer Science,Kinnaird College for Women,Lahore,54000,Pakistan
出 处:《Computer Systems Science & Engineering》2023年第10期823-842,共20页计算机系统科学与工程(英文)
摘 要:Cardiotocography(CTG)represents the fetus’s health inside the womb during labor.However,assessment of its readings can be a highly subjective process depending on the expertise of the obstetrician.Digital signals from fetal monitors acquire parameters(i.e.,fetal heart rate,contractions,acceleration).Objective:This paper aims to classify the CTG readings containing imbalanced healthy,suspected,and pathological fetus readings.Method:We perform two sets of experiments.Firstly,we employ five classifiers:Random Forest(RF),Adaptive Boosting(AdaBoost),Categorical Boosting(CatBoost),Extreme Gradient Boosting(XGBoost),and Light Gradient Boosting Machine(LGBM)without over-sampling to classify CTG readings into three categories:healthy,suspected,and pathological.Secondly,we employ an ensemble of the above-described classifiers with the oversamplingmethod.We use a random over-sampling technique to balance CTG records to train the ensemble models.We use 3602 CTG readings to train the ensemble classifiers and 1201 records to evaluate them.The outcomes of these classifiers are then fed into the soft voting classifier to obtain the most accurate results.Results:Each classifier evaluates accuracy,Precision,Recall,F1-scores,and Area Under the Receiver Operating Curve(AUROC)values.Results reveal that the XGBoost,LGBM,and CatBoost classifiers yielded 99%accuracy.Conclusion:Using ensemble classifiers over a balanced CTG dataset improves the detection accuracy compared to the previous studies and our first experiment.A soft voting classifier then eliminates the weakness of one individual classifier to yield superior performance of the overall model.
关 键 词:Fetal health cardiotocography(CTG) ensemble learning adaptive boosting(AdaBoost) voting classifier
分 类 号:TP3[自动化与计算机技术—计算机科学与技术] R714.5[医药卫生—妇产科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7