Web Intelligence with Enhanced Sunflower Optimization Algorithm for Sentiment Analysis  被引量:1

在线阅读下载全文

作  者:Abeer D.Algarni 

机构地区:[1]Department of Information Technology,College of Computer and Information Sciences,Princess Nourah bint Abdulrahman University,P.O.Box 84428,Riyadh,11671,Saudi Arabia

出  处:《Computer Systems Science & Engineering》2023年第10期1233-1247,共15页计算机系统科学与工程(英文)

基  金:Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R51);Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。

摘  要:Exponential increase in the quantity of user generated content in websites and social networks have resulted in the emergence of web intelligence approaches.Several natural language processing(NLP)tools are commonly used to examine the large quantity of data generated online.Particularly,sentiment analysis(SA)is an effective way of classifying the data into different classes of user opinions or sentiments.The latest advances in machine learning(ML)and deep learning(DL)approaches offer an intelligent way of analyzing sentiments.In this view,this study introduces a web intelligence with enhanced sunflower optimization based deep learning model for sentiment analysis(WIESFO-DLSA)technique.The major intention of the WIESFO-DLSA technique is to identify the expressions or sentiments that exist in the social networking data.The WIESFO-DLSA technique initially performs pre-processing and word2vec feature extraction processes to generate a meaningful set of features.At the same time,bidirectional long short term memory(BiLSTM)model is applied for classification of sentiments into different class labels.Moreover,an enhanced sunflower optimization(ESFO)algorithm is exploited to optimally adjust the hyperparameters of the BiLSTM model.A wide range of simulation analyses is performed to report the better outcomes of the WISFO-DLSA technique and the experimental outcomes ensured its promising performance under several measures.

关 键 词:Sentiment analysis web intelligence deep learning social networking natural language processing 

分 类 号:TP31[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象