基于旋转框的轻量高效安全带检测算法研究  

Research on Lightweight and Efficient Seat Belt Detection Algorithm Based on Rotating Frame

在线阅读下载全文

作  者:宋长明[1] 梁朝阳 肖露 宋蒙 彩朔 SONG Changming;LIANG Chaoyang;XIAO Lu;SONG Meng;CAI Shuo(College of Science,Zhongyuan University of Technology,Zhengzhou 450007,China)

机构地区:[1]中原工学院理学院,河南郑州450007

出  处:《软件工程》2023年第7期48-53,共6页Software Engineering

摘  要:交通安全监控图像中的汽车驾驶员安全带检测,可以协助交通管理部门规范驾驶员的驾驶行为。针对汽车驾驶员安全带检测中目标尺寸较小、特征对齐难度较大、检测速度较慢等问题,在Mobilenet V2轻量化主干网络的基础上,引入Oriented RCNN旋转框目标检测算法,提出注意力特征融合模块(Attention Feature Fusion Module,AFFM),从而构建了一种轻量高效的端到端旋转框安全带检测算法。该算法的平均精度(AP)达到0.905,查全率(Recall)达到0.949,参数量(Params)仅需要18.54 MB,端到端的检测推理速度(FPS)达到每秒14.6张图片。实验结果表明,该算法有效提高了监控图像中汽车驾驶员安全带检测性能,在实际应用中具备一定的竞争力。Driver's seat belt detection in the traffic safety monitoring image can help the traffic management department to regulate the driver's driving behavior.Aiming at the problems of small target size,difficult feature alignment and slow detection speed in the detection of automobile driver's safety belt,this paper proposes a lightweight and efficient end-to-end rotating frame safety belt detection algorithm,by introducing the Oriented RCNN rotating frame target detection algorithm and proposing the Attention Feature Fusion Module(AFFM),based on the MobilenetV2 lightweight backbone network.The average precision(AP)of the algorithm reaches 0.905,the recall rate(Recall)reaches 0.949,the parameter quantity(Params)only requires 18.54 MB,and the end-to-end detection and inference speed(FPS)reaches 14.6 images per second.The experimental results show that this algorithm effectively improves the detection performance of car driver safety belts in monitoring images,and has certain competitiveness in practical applications.

关 键 词:安全带检测 旋转目标检测 注意力机制 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象