检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Faculty of Information Technology,Quy Nhon University,Quy Nhon City,Vietnam
出 处:《Computer Systems Science & Engineering》2023年第1期471-483,共13页计算机系统科学与工程(英文)
基 金:This work is supported by project No.B2020-DQN-08 from the Ministry of Education and Training of Vietnam.
摘 要:Recommender systems are similar to an informationfiltering system that helps identify items that best satisfy the users’demands based on their pre-ference profiles.Context-aware recommender systems(CARSs)and multi-criteria recommender systems(MCRSs)are extensions of traditional recommender sys-tems.CARSs have integrated additional contextual information such as time,place,and so on for providing better recommendations.However,the majority of CARSs use ratings as a unique criterion for building communities.Meanwhile,MCRSs utilize user preferences in multiple criteria to better generate recommen-dations.Up to now,how to exploit context in MCRSs is still an open issue.This paper proposes a novel approach,which relies on deep learning for context-aware multi-criteria recommender systems.We apply deep neural network(DNN)mod-els to predict the context-aware multi-criteria ratings and learn the aggregation function.We conduct experiments to evaluate the effect of this approach on the real-world dataset.A significant result is that our method outperforms other state-of-the-art methods for recommendation effectiveness.
关 键 词:Recommender systems CONTEXT-AWARE MULTI-CRITERIA deep learning deep neural network
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.144.240