基于臭气空间分布特性的城市污水除臭仿真  

Simulation of Urban Sewage Deodorization Based on Spatial Distribution Characteristics of Odor

在线阅读下载全文

作  者:于艳 于晓丹 YU Yan;YU Xiao-dan(Municipal and Environmental Engineering Institute,Jilin University of Architecture and Technology,Jilin Changchun 130114,China;School of Municipal&Environmental Engineering,Jilin Jianzhu University,Jilin Changchun 130118,China)

机构地区:[1]吉林建筑科技学院市政与环境工程学院,吉林长春130114 [2]吉林建筑大学市政与环境工程学院,吉林长春130118

出  处:《计算机仿真》2023年第5期530-534,共5页Computer Simulation

摘  要:当前的污水除臭技术存在除臭效果不理想以及变化规律难以界定等问题。为了进一步优化城市空气质量,加强控制污染处理技术的应用,提出一种基于臭气空间分布特性的城市污水除臭方法。通过组建数学物理模型、数值算法求解以及结果可视化构建城市臭气的空间分布特性分析模型。选取J城市污水处理厂作为研究对象,选取硫化氢以及甲硫醇等典型的恶臭物质,根据污水中恶臭物体近六个月的变化规律,考虑有可能的影响因素,对恶臭物体的污染强度进行估算,对其变化规律以及生物滤池工艺特性进行分析研究,得到一套全新的污水除臭技术。经实验测试证明,所提方法能够有效去除城市污水中的恶臭物质,对硫化氢和氨的去除率高达90%以上。In order to further optimize the urban air quality and strengthen the application of pollution treatment technology,this article puts forward a method of deodorizing municipal sewage based on the spatial distribution characteristics of bad odor.Firstly,a model of analyzing spatial distribution characteristics of municipal odor was built based on the construction of mathematical-physical model,solution of numerical algorithm and visualization of results.Secondly,the sewage-treatment plant in city J was selected as the research object.According to the change law of malodorous substances in the past six months,the typical malodorous substances such as hydrogen sulfide and methyl mercaptan were selected to estimate the pollution intensity of malodorous substance,with considering some possible factors.Meanwhile,the change rule and the characteristics of biological aerated filter process were analyzed.Finally,a new set of sewage deodorization technology was obtained.Test results prove that the proposed method can effectively remove the malodorous substances from urban sewage,with a removal rate of over 90%for hydrogen sulfide and ammonia.

关 键 词:臭气空间分布特性 城市污水 除臭 恶臭物质 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象