检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bing-guang CHEN Xiang-chan ZHU
机构地区:[1]Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]Department of Mathematics,University of Bielefeld,D-33615 Bielefeld,Germany
出 处:《Acta Mathematicae Applicatae Sinica》2023年第3期511-549,共39页应用数学学报(英文版)
基 金:Research supported in part by NSFC(No.11771037);Key Lab of Random Complex Structures and Data Science,Chinese Academy of Science;Financial the DFG through the CRC 1283“Taming uncertainty and profiting from randomness and low regularity in analysis,stochastics and their applications”。
摘 要:In this paper we establish the large deviation principle for the the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity both for small noise and for short time.The proof for large deviation principle is based on the weak convergence approach.For small time asymptotics we use the exponential equivalence to prove the result.
关 键 词:large deviation principle stochastic Navier-Stokes equations anisotropic viscosity small time asymptotics weak convergence approach
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171