Large Deviation Principle for the Two-dimensional Stochastic Navier-Stokes Equations with Anisotropic Viscosity  

在线阅读下载全文

作  者:Bing-guang CHEN Xiang-chan ZHU 

机构地区:[1]Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]Department of Mathematics,University of Bielefeld,D-33615 Bielefeld,Germany

出  处:《Acta Mathematicae Applicatae Sinica》2023年第3期511-549,共39页应用数学学报(英文版)

基  金:Research supported in part by NSFC(No.11771037);Key Lab of Random Complex Structures and Data Science,Chinese Academy of Science;Financial the DFG through the CRC 1283“Taming uncertainty and profiting from randomness and low regularity in analysis,stochastics and their applications”。

摘  要:In this paper we establish the large deviation principle for the the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity both for small noise and for short time.The proof for large deviation principle is based on the weak convergence approach.For small time asymptotics we use the exponential equivalence to prove the result.

关 键 词:large deviation principle stochastic Navier-Stokes equations anisotropic viscosity small time asymptotics weak convergence approach 

分 类 号:O302[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象