Method for Fault Diagnosis and Speed Control of PMSM  

在线阅读下载全文

作  者:Smarajit Ghosh 

机构地区:[1]Department of Electrical and Instrumentation Engineering,Thapar Institute of Engineering&Technology,Patiala,Punjab,India

出  处:《Computer Systems Science & Engineering》2023年第6期2391-2404,共14页计算机系统科学与工程(英文)

摘  要:In the field of fault tolerance estimation,the increasing attention in electrical motors is the fault detection and diagnosis.The tasks performed by these machines are progressively complex and the enhancements are likewise looked for in the field of fault diagnosis.It has now turned out to be essential to diagnose faults at their very inception;as unscheduled machine downtime can upset deadlines and cause heavy financial burden.In this paper,fault diagnosis and speed control of permanent magnet synchronous motor(PMSM)is proposed.Elman Neural Network(ENN)is used to diagnose the fault of permanent magnet synchronous motor.Both the fault location and fault severity are considered.In this,eccentricity fault may occur in the motor.To control the speed of the permanent magnet synchronous motor,Dolphin Swarm Optimization(DSO)algorithm is used.The proposed work is simulated by using MATLAB in terms of amplitude,speed and torque.The comparison graph of speed vs.torque obtained by the proposed method gives better result compared to the other existing techniques.The proposed work is also compared with Particle Swarm Optimization(PSO)and Elephant Herding Optimization(EHO)algorithm.The proposed usage of Elman Neural Network to detect the fault and the usage of Dolphin Swarm Optimization algorithm to control the speed of the permanent magnet synchronous motor gives better outcome.

关 键 词:AMPLITUDE electricmotor elephant herding optimization algorithm fault detection partial swarm optimization algorithm permanent magnet synchronous motor 

分 类 号:TM341[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象