销量约束下基于切片递归神经网络模型的成品油价格推荐算法  被引量:1

A fuel price recommendation model based on the sliced recurrent neural network under sales constraints

在线阅读下载全文

作  者:连会强 刘兵 李朋远 于华 LIAN Huiqiang;LIU Bing;LI Pengyuan;YU Hua(School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China;PetroChina Hebei Marketing Company,Shijiazhuang 050000,China;DingLi Corporation Ltd.,Zhuhai 519000,Guangdong,China)

机构地区:[1]中国科学院大学工程科学学院,北京100049 [2]中国石油天然气集团公司河北分公司,石家庄050000 [3]珠海世纪鼎利科技股份有限公司,广东珠海519000

出  处:《中国科学院大学学报(中英文)》2023年第4期566-576,共11页Journal of University of Chinese Academy of Sciences

基  金:国家自然科学基金(71450009);中国石油天然气集团河北省公司物联网加油站应用项目资助。

摘  要:加油站成品油零售价格的确定是智慧加油站发展的关键。由于成品油价格的变化遵循复杂的非线性规律,尽管以长短期记忆(LSTM)为代表的非线性时序模型提高了传统时序预测方法的精度,但其运行效率难以满足动态变化的油价预测需求。针对这一问题,提出一种基于切片递归神经网络(SRNN)的成品油价格推荐模型,该模型以LSTM模型为递归单元,创新性地通过决策者根据多源数据得到的聚类结果筛选、设置的市场环境因子,对成品油销量施加影响,从而实现在销售约束条件下的成品油价格推荐。基于4年的加油站历史数据对模型预测性能进行了评估。结果表明,使用该模型与LSTM神经网络具有相同的预测精度水平,但比LSTM神经网络的运行速度快72倍。此外,基于SRNN模型的成品油价格推荐算法,加油站在实际销售中得到有效的应用,验证该模型的实用价值。Determining the retail fuel price for the petrol stations is essential for the development of smart petrol stations.Since the changes in the fuel price follow a complex nonlinear model,the nonlinear time series mode represented by long short-term memory(LSTM)have improved the accuracy of traditional time series forecasting methods,though,its running efficiency is still difficult to meet the dynamic demand of oil price forecasting.To address this issue,in this paper we propose a fuel price recommendation model based on the sliced recurrent neural network(SRNN)with an LSTM model as the recurrent unit under the sales constraints.We further train this model and evaluate its learning parameters,such as learning rate,based on 4 years of historical data.In our evaluations,we utilize real data from petrol stations.Results show that our proposed model achieves the same level of accuracy as that of the LSTM neural network;however,it is 72 times faster than that of the LSTM neural network.Besides,the fuel price recommendation model based on the SRNN is efficiently applied to real petrol stations hence confirmed its practical value.

关 键 词:长短期记忆人工神经网络 价格推荐算法 智慧加油站 条件切片循环人工神经网络 不完整多视角聚类 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象