检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭磊 高航[1] 田青青 郭利霞 李泽宣 GUO Lei;GAO Hang;TIAN Qingqing;GUO Lixia;LI Zexuan(School of Water Conservancy,North China University of Water Resources and Electric Power,Zhengzhou 450046,China;Henan Key Laboratory of Water Environment Simulation and Treatment,North China University of Water Resources and Electric Power,Zhengzhou 450002,China;Water Resources Institute,China Institute of Water Resources and Hydropower Research,Beijing 100038,China)
机构地区:[1]华北水利水电大学水利学院,河南郑州450046 [2]华北水利水电大学河南省水环境模拟与治理重点实验室,河南郑州450002 [3]中国水利水电科学研究院水资源所,北京100038
出 处:《建筑材料学报》2023年第6期631-637,共7页Journal of Building Materials
基 金:“十四五”国家重点研发计划项目(2021YFC3001000);国家自然科学基金资助项目(52109154)。
摘 要:针对胶凝砂砾石(CSG)抗压强度试验周期长、耗材大等问题,运用极度梯度提升树-长短期记忆网络(XGBoost-LSTM)组合模型对CSG抗压强度进行预测.先选取相关性较强的“水泥含量”和“砂率”这2个输入变量代入XGBoost模型进行预测,并将结果与原特征一起代入LSTM模型;再采用94组抗压强度数据进行训练和验证.结果表明:与基础模型XGBoost和LSTM相比,XGBoost-LSTM组合模型的决定系数分别提高5.6%和3.5%.说明通过XGBoost模型构造新特征具有可行性,且XGBoost-LSTM组合模型能够对CSG抗压强度进行精准预测.To solve the problems of too long compressive strength test cycle and too much material of cementitious sand and gravel(CSG)consumed,the model of extreme gradient boosting tree combined with long short-term memory network(XGBoost-LSTM)was used to predict the compressive strength of CSG.Firstly,the two input variables of“cement content”and“sand ratio”with strong correlation were selected into the XGBoost model for prediction,and the results were substituted into the LSTM model together with the original features.Another 94 sets of compressive strength data were used for training and validation.The results show that compared with the basic models XGBoost and LSTM,the coefficient of determination of the XGBoost-LSTM combined model is increased by 5.6%and 3.5%respectively.It has shown to be feasible to construct new features by the XGBoost model,and the XGBoost-LSTM combined model can accurately predict the compressive strength of CSG.
关 键 词:极度梯度提升树 长短期记忆网络 胶凝砂砾石 抗压强度
分 类 号:TV41[水利工程—水工结构工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44