检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yiqian Huang Zhiyun Du Ke Li Wei Jing Pengfei Wei Bo Zhao Yingjie Yu Qing Cai Xiaoping Yang
机构地区:[1]State Key Laboratory of Organic‑Inorganic Composites,Beijing Laboratory of Biomedical Materials,Beijing University of Chemical Technology,Beijing 100029,China [2]Beijing Biosis Healing Biological Technology Co.,Ltd,Beijing 102629,China [3]Foshan(Southern China)Institute for New Materials,Foshan 528200,Guangdong,China
出 处:《Advanced Fiber Materials》2022年第4期894-907,共14页先进纤维材料(英文)
基 金:The authors acknowledge financial support from the National Key R&D Program of China(2018YFE0194400);the National Natural Science Foundation of China(51873013);Guangdong Basic and Applied Basic Research Foundation(2020A1515111182).
摘 要:Bone defects are always accompanied by inflammation due to excessive reactive oxygen species(ROS)in injured regions,which greatly impedes the regeneration of bone tissues.Although many conductive polymers have been developed to scavenge ROS,they are typically non-degradable under physiological conditions,making them unsuitable for in vivo applications.Biodegradable polyorganophosphazenes(POPPs)may serve as potent ROS-scavenging biomaterials owing to their versatile chemical structures and ease of functionalization.Herein,a PATGP-type electroactive polyphosphazene with side groups of aniline tetramer and glycine ethyl ester was compared to conventional poly(lactic-co-glycolic acid)(PLGA)in regenerating bone tissues.To conduct in vitro and in vivo evaluations,three kinds of electrospun nanofibrous meshes were prepared:PLGA,PLGA/PATGP blend,and PLGA/PATGP core–shell nanofibers.Among them,PLGA/PATGP core–shell nanofibers outperform the blend and PLGA nanofibers in terms of scavenging ROS,promoting osteogenic differentiation,and accelerating neo-bone formation.The continuous PATGP shell on the PLGA/PATGP core–shell nanofiber surface could apparently provide more significant modulation effects on cellular behaviors than the PLGA/PATGP blend nanofibers with PATGP dispersed in the PLGA matrix.Therefore,the core–shell structured PLGA/PATGP nanofibers were envisioned as a promising candidate scaffold for bone tissue engineering.Additionally,the core–shell design paved the way for biomedical applications of functional POPPs in combination with other polymeric biomaterials,without phase separation or difficulty of increasing the molecular weights of POPPs.
关 键 词:Polyorganophosphazene Bone regeneration ROS-scavenging ELECTROACTIVE ELECTROSPINNING
分 类 号:TB383[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.16.26