零膨胀模型与狄利克雷过程结合在药品上市后不良反应信号检测中的应用  

Combination of zero-inflated model and Dirichlet process in detection of adverse reaction signals during post-marketing surveillance

在线阅读下载全文

作  者:陈晨鑫 张朋朋 刘永梅 叶小飞[1] 贺佳[1] CHEN Chenxin;ZHANG Pengpeng;LIU Yongmei;YE Xiaofei;HE Jia(Department of Health Statistics,Faculty of Health Service,Naval Medical University,Shanghai 200433,China;Tianjin Rehabilitation Center of Joint Logistic Support Force,Tianjin300191,China)

机构地区:[1]海军军医大学卫勤系军队卫生统计学教研室,上海200433 [2]联勤保障部队天津康复疗养中心,天津300191

出  处:《中国药物警戒》2023年第6期651-654,共4页Chinese Journal of Pharmacovigilance

基  金:国家自然科学基金资助项目(82073671);中国毒理学会临床毒理专项(CST2019CT201);中国毒理学会临床毒理专项(CST2019CT101)。

摘  要:目的探索零膨胀模型与狄利克雷过程2种方法结合,在优化药品上市后安全性信号检测结果中的可能性。方法通过文献检索,对零膨胀模型和狄利克雷过程的原理进行综述,分别总结2种方法的研究现状及优点,并提出二者结合以扩展信号检测方法的假设。结果零膨胀模型能够校正超额“零计数”问题,减少信号检测结果的偏倚;狄利克雷过程通过丰富药品不良反应报告率先验分布的选择空间,能有效控制假阳性信号的产生。结论将零膨胀模型与狄利克雷过程相结合,用于扩展现有贝叶斯信号检测方法存在一定可能,值得进一步研究。Objective To explore the possibility of the zero-inflated model being combined with Dirichlet process in optimizing the results of post-marketing safety signal detection of drugs.Methods By retrieving related literature,the principles of the zero-inflated model and Dirichlet process were reviewed.The current research on and strengths of the two methods were summarized.Thus,the combination of these two methods to extend technologies of signal detection was proposed.Results The zero-inflated model could minimize“excess zeros”and reduce the bias of signal detection results,while Dirichlet process could curb the false positive rate by enriching the selection of prior distribution of reporting rates of drug-adverse event pairs.Conclusion It is possible to combining the zero-inflated model with Dirichlet process to extend methods of Bayesian signal detection,and this approach deserves more study.

关 键 词:零膨胀模型 狄利克雷过程 上市后药品监测 信号检测 药品不良反应 

分 类 号:R911[医药卫生—药学] R994

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象