Generalization properties of restricted Boltzmann machine for short-range order  

在线阅读下载全文

作  者:M A Timirgazin A K Arzhnikov 

机构地区:[1]Udmurt Federal Research Center,Ural Branch of RAS,Izhevsk 426067,Russia

出  处:《Chinese Physics B》2023年第6期556-562,共7页中国物理B(英文版)

基  金:supported by the financing program AAAA-A16-116021010082-8。

摘  要:A biased sampling algorithm for the restricted Boltzmann machine(RBM) is proposed, which allows generating configurations with a conserved quantity. To validate the method, a study of the short-range order in binary alloys with positive and negative exchange interactions is carried out. The network is trained on the data collected by Monte–Carlo simulations for a simple Ising-like binary alloy model and used to calculate the Warren–Cowley short-range order parameter and other thermodynamic properties. We demonstrate that the proposed method allows us not only to correctly reproduce the order parameters for the alloy concentration at which the network was trained, but can also predict them for any other concentrations.

关 键 词:machine learning short-range order Ising model restricted Boltzmann machine 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象