检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sujithra Kanmani Surendiran Balasubramanian
出 处:《Computer Systems Science & Engineering》2023年第5期1439-1454,共16页计算机系统科学与工程(英文)
摘 要:Online reviews significantly influence decision-making in many aspects of society.The integrity of internet evaluations is crucial for both consumers and vendors.This concern necessitates the development of effective fake review detection techniques.The goal of this study is to identify fraudulent text reviews.A comparison is made on shill reviews vs.genuine reviews over sentiment and readability features using semi-supervised language processing methods with a labeled and balanced Deceptive Opinion dataset.We analyze textual features accessible in internet reviews by merging sentiment mining approaches with readability.Overall,the research improves fake review screening by using various transformer models such as Bidirectional Encoder Representation from Transformers(BERT),Robustly Optimized BERT(Roberta),XLNET(Transformer-XL)and XLM-Roberta(Cross-lingual Language model–Roberta).This proposed research extracts and classifies features from product reviews to increase the effectiveness of review filtering.As evidenced by the investigation,the application of transformer models improves the performance of spam review filtering when related to existing machine learning and deep learning models.
关 键 词:Fraudulent SENTIMENT READABILITY BERT XLNET roberta XLMroberta
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.90.150