检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张茜 ZHANG Xi(School of Mathematical Sciences,South China Normal University,Guangzhou Guangdong 510631,China)
机构地区:[1]华南师范大学数学科学学院,广东广州510631
出 处:《信息与电脑》2023年第7期75-77,共3页Information & Computer
摘 要:手写数字识别是经典的分类任务,在支票阅读、街道编号识别等方面具有许多实际应用。为了提高手写数字分类准确性,文章提出了基于遗传算法(Genetic Algorithm,GA)优化的反向传播(Back Propagation,BP)神经网络模型,即GA-BP神经网络模型。基于MNIST手写数字训练集,GA-BP神经网络模型在迭代50次时能达到95.07%的分类准确率,显著高于BP神经网络等单一分类模型的准确率,验证了改进后的模型在手写数字分类上的有效性。Handwritten digit recognition is a classical classification task with many practical applications in check reading,street number recognition,etc.In order to improve the classification accuracy of handwritten digits,the paper proposes a Back Propagation(BP) neural network model based on Genetic Algorithm(GA) optimization,namely GA-BP neural network model.Based on the MNIST handwritten digit training set,the GA-BP neural network model can achieve 95.07% classification accuracy at 50 iterations,which is significantly higher than the accuracy of a single classification model such as BP neural network,verifying the effectiveness of the improved model for handwritten digit classification.
关 键 词:手写数字识别 反向传播(BP)神经网络 遗传算法(GA)
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249