机构地区:[1]Department of Atmospheric and Oceanic Sciences,Institute of Atmospheric Sciences,Fudan University,Shanghai 200438,China [2]College of Geography and Resources Science,Sichuan Normal University,Chengdu 610101,China [3]CMA-FDU Joint Laboratory of Marine Meteorology,Shanghai 200438,China [4]National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary,Shanghai 202183,China [5]Shanghai Frontiers Science Center of Atmosphere-Ocean Interaction,Shanghai 200123,China [6]Chinese Academy of Meteorological Sciences,China Meteorological Administration,Beijing 100081,China [7]Key Laboratory of Cites’Mitigation and Adaptation to Climate Change in Shanghai,China Meteorological Administration,Shanghai 200030,China
出 处:《Science China Earth Sciences》2023年第6期1185-1211,共27页中国科学(地球科学英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.41822503 and 42175053);the National Key Research and Development Program(Grant No.2016YFA0601502).
摘 要:Based on modern observations,historical proxy data,and climate model simulations,this paper provides a comprehensive overview of the past,present and future evolution characteristics of the Atlantic Meridional Overturning Circulation(AMOC),as well as its impact on the surface air temperature(SAT)at regional and hemispherical scales.The reconstruction results based on the proxy data indicate that the AMOC has weakened since the late 19th century and experienced overall weakening throughout the 20th century with low confidence.Direct observations show that the AMOC weakened during 2004–2016,but it is not possible to distinguish between its decadal variability and long-term trend.Climate models predict that if greenhouse gas emissions continue to increase,AMOC will weaken in the future,but there will not be a sudden collapse before 2100.For the thermodynamic effects of AMOC,the increased surface heat flux release and meridional heat transport(MHT)over the North Atlantic associated with the strong AMOC cause an increase in the hemispherical SAT.At the millennial scale,climate cooling(warming)periods correspond to a weakened(strengthened)AMOC.The enhanced MHT of a strong AMOC can affect Arctic warming and thus influence regional SAT anomalies and SAT extremes through mutual feedback between Arctic sea ice and AMOC.In terms of dynamic effects,a strong AMOC modulates the Rossby wave trains originating from the North Atlantic and spreading across mid-to-high latitudes in the Northern Hemisphere and causes an increase in the variabilities in the circulation anomalies over the Ural and Siberian regions.Ultimately,a strong AMOC significantly affects the frequencies of extreme cold and warm events in the mid-to-high latitude regions over Eurasia.In addition,AMOC can also influence regional and global SAT anomalies through its dynamic adjustment of planetary-scale circulation.Decadal variation in AMOC is closely related to the Atlantic Multidecadal Oscillation(AMO).During positive phases of AMO and AMOC,enhanced surface hea
关 键 词:AMOC EVOLUTION Surface air temperature Thermodynamic and dynamic effects PREDICTION
分 类 号:P461.2[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...