高速永磁同步电动机转子涡流损耗优化  被引量:1

Optimization for the rotor eddy current loss in high-speed permanent magnet synchronous motor

在线阅读下载全文

作  者:李子钊 王书华(指导) 汪旭东 黄鸿健 苏亚宾 LI Zizhao;WANG Shuhua;WANG Xudong;HUANG Hongjian;SU Yabin(School of Electrical Engineering,Shanghai Dianji University,Shanghai 201306,China)

机构地区:[1]上海电机学院电气学院,上海201306

出  处:《上海电机学院学报》2023年第3期153-158,共6页Journal of Shanghai Dianji University

摘  要:针对高速永磁同步电动机转子上涡流损耗较大的问题,提出了一种结合护套分层结构与护套之间加装铜屏蔽层的优化方法。首先,分析涡流损耗的产生机理以及对护套分层的理论解析,通过有限元仿真验证得出护套分层结构可减少护套厚度,达到降低损耗的目的。其次,在护套分层结构的基础上,进一步仿真分析铜屏蔽层对涡流损耗的抑制效果,并确定铜屏蔽层的最佳厚度。最后,对优化前后转子涡流损耗、电动机主要性能参数进行对比,较优化前,转子涡流损耗下降了59.8%,气隙磁密、空载反电势基本不变。研究表明:该优化方法能够有效地削减转子上的涡流损耗,且对电动机性能基本不会产生影响。To solve the problem of large rotor eddy current loss in high-speed permanent magnet synchronous motor,an optimization method is proposed by combining the layered structure of the sheath and a copper shield layer added between the sheath.First,the generation mechanism of eddy current loss and the theoretical analysis of sheath layering are analyzed.It is verified by finite element simulation that the sheath layered structure can reduce the thickness of the sheath and achieve the goal of reducing loss.Second,based on the layered structure of the sheath,the inhibitory effect of the copper shielding layer on eddy current loss is further simulated and analyzed,and the optimal thickness of the copper shielding layer is determined.Finally,the rotor eddy current loss and the main performance parameters of the motor before and after optimization are compared to verify that the rotor eddy current loss decreases by 59.8%,and the air gap magnetic density and no-load back EMF are basically unchanged.The results show that the optimization method can effectively reduce the eddy current loss on the rotor and has little effect on motor performance.

关 键 词:高速永磁同步电动机 转子涡流损耗 铜屏蔽层 应力 

分 类 号:TM355[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象