检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曲晓东 李佳昊 QU Xiaodong;LI Jiahao(Zhongyuan University of Technology,Zhengzhou 450007,China)
机构地区:[1]中原工学院,郑州450007
出 处:《移动信息》2023年第6期234-236,共3页MOBILE INFORMATION
摘 要:作为众多任务的子任务,命名实体识别的发展较为迅速,但在中文命名实体识别领域,还存在不少问题,嵌套实体就是其中一个难点。文中根据结点的传入和传出,使用了图卷积神经网络提取图特征,改善了嵌套实体的准确度,并通过使用图神经网络处理中文命名实体识别的问题,更好地融合了词典信息。另外,文中分别对两类数据集进行了实验验证,结果显示,相比其他模型,该模型有所提高。As a subtask of many tasks,named entity recognition has developed rapidly,but there are still many problems in the field of Chinese named entity recognition,and nested entities are one of the difficulties.This paper uses graph convolutional neural networks to extract graph features according to the incoming and outgoing nodes,improves the accuracy of nested entities,and by using graph neural networks to deal with the problem of Chinese named entity recognition,so as to better integrate dictionary information.In addition,experimental verification of two types of datasets is carried out in this paper,and the results show that the model has improved compared with other models.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90