检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yixin HUANG Shufan WU Zhankui ZENG Zeyu KANG Zhongcheng MU Hai HUANG
机构地区:[1]School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China [2]Shanghai Academy of Spaceflight Technology,Shanghai 200240,China [3]School of Astronautics,Beihang University,Beijing 100191,China
出 处:《Chinese Journal of Aeronautics》2023年第6期288-301,共14页中国航空学报(英文版)
基 金:co-supported by the National Natural Science Foundation of China(No.U20B2056);the Office of Military and Civilian Integration Development Committee of Shanghai,China(No.2020-jmrh1-kj25).
摘 要:Multi-beam antenna and beam hopping technologies are an effective solution for scarce satellite frequency resources.One of the primary challenges accompanying with Multi-Beam Satellites(MBS)is an efficient Dynamic Resource Allocation(DRA)strategy.This paper presents a learning-based Hybrid-Action Deep Q-Network(HADQN)algorithm to address the sequential decision-making optimization problem in DRA.By using a parameterized hybrid action space,HADQN makes it possible to schedule the beam pattern and allocate transmitter power more flexibly.To pursue multiple long-term QoS requirements,HADQN adopts a multi-objective optimization method to decrease system transmission delay,loss ratio of data packets and power consumption load simultaneously.Experimental results demonstrate that the proposed HADQN algorithm is feasible and greatly reduces in-orbit energy consumption without compromising QoS performance.
关 键 词:Beam hopping Deep reinforcement learning Dynamic resource allocation Mixed-integer programming Multi-beam satellite systems Multi-objective optimization
分 类 号:V474[航空宇航科学与技术—飞行器设计] V52
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.212.224