基于改进YOLOv5+DeepSort的柑橘果实识别与计数研究  被引量:5

在线阅读下载全文

作  者:庄昊龙 周嘉灏 林毓翰 彭海深 林宏宇 

机构地区:[1]华南农业大学数学与信息学院、软件学院,广东广州510642 [2]华南农业大学电子工程学院(人工智能学院),广东广州510642 [3]华南农业大学工程学院,广东广州510642

出  处:《南方农机》2023年第15期9-13,共5页

基  金:国家级大学生创新训练项目(202110564023)。

摘  要:【目的】传统的水果检测识别技术具有一定的环境适应缺陷性和主观性,通常是对水果的纹理、颜色、形状等外表特征进行提取和识别,为实现对柑橘果实产量的精准预测,需研究温室环境下对柑橘果实的快速识别及计数。【方法】项目组选取从柑橘种植园中多场景拍摄的5926张图片作为训练集、738张图片作为验证集、608张图片作为测试集,采用DeepSort算法结合改进YOLOv5算法的方式,通过在主干部分加入SE注意力机制以实现对算法的改进,从而提高对柑橘果实的识别效果;在柑橘果实计数部分,主要采用DeepSort算法给予每个柑橘果实单独的ID编号以实现对柑橘果实的计数。【结果】改进后的YOLOv5算法对柑橘果实的平均识别准确率为93.712%,相比改进前的CenterNet算法、EfficientDet算法、SSD算法、YOLOv4算法、YOLOX算法,平均识别准确率提升了1.354个百分点,并且精确度和召回率也有一定的提升,结合DeepSort算法后对柑橘果实的平均多目标跟踪准确率为88.465%,可较准确地实现对柑橘果实的计数。【结论】DeepSort算法具有提升目标被环境等其他因素遮挡情况下的计数效果的优点,加入SE注意力机制对YOLOv5算法进行改进,对柑橘果实具有更好的识别效果。

关 键 词:YOLOv5算法 DeepSort算法 SE注意力机制 柑橘果实 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象